Analysis of Algorithms

1T

Input Algorithm

(1,
N

An algorithm is a step-by-step procedure for
solving a problem in a finite amount of time.

© 2004 Goodrich, Tamassia

Running Time (§3.1)

N

Most algorithms transform O best case
input objects into output i A
objects. 120- '
The running time of an 100,
algorithm typically grows

(o]
o

with the input size.

Average case time is often
difficult to determine.

\We focus on the worst case 201
running time. 0-
= Easier to analyze

= Crucial to applications such as
games, finance and robotics

Running Time
I (=)
? o

1000 2000 3000 4000
Input Size

© 2004 Goodrich, Tamassia Analysis of Algorithms 2

Experimental Studies

&

#® Write a program 2000 :
implementing the 8000 -
algorithm 7000 - .

Run the program with 6000 - a
inputs of varying size and E 5000 -
composition | 2 4000 - .

Use a method like SRm—.
System.currentTimeMillis() to shool] o
get an accurate measure it
of the actual running time %% y B

0 — .
Plot the results o Lo 1o
Input Size

© 2004 Goodrich, Tamassia Analysis of Algorithms 3

Limitations of Experiments

N

#® It is necessary to implement the
algorithm, which may be difficult

Results may not be indicative of the
running time on other inputs not included
in the experiment.

@ In order to compare two algorithms, the
same hardware and software
environments must be used

© 2004 Goodrich, Tamassia Analysis of Algorithms 4

Theoretical Analysis

N

Uses a high-level description of the
algorithm instead of an implementation

Characterizes running time as a
function of the input size, n.

#® Takes into account all possible inputs

Allows us to evaluate the speed of an
algorithm independent of the
hardware/software environment

© 2004 Goodrich, Tamassia Analysis of Algorithms 5

A

Pseudocode (83.2)

High-level description Example: find max
of an algorithm

element of an array
#® More structured than
English prose

Algorithm arrayMax(A, n)
Input array A4 of n integers
Less detailed than a Output maximum element of 4
program
Preferred notation for | cu#rrentMax < A[0]
describing algorithms

fori< 1ton—1do
Hides program design
Issues

it A|i] > currentMax then
currentMax < Ali]
return currentMax

© 2004 Goodrich, Tamassia

Analysis of Algorithms

Pseudocode Details

N

@ Control flow #® Method call
= if ... then ... [else ...] var.method (arg [, arg...])
= while ... do ... # Return value
= repeat ... until ... return expression
= for ... do ... ® Expressions
= Indentation replaces braces eﬁislign?;e?;va)
@ Method declaration _ Equality testing
Algorithm method (arg [, arg...]) (like == in Java)
Input . .. n? Superscripts and other
Output ... mathematical

formatting allowed

© 2004 Goodrich, Tamassia Analysis of Algorithms

The Random Access Memory
(RAM) Model

N

#® A CPU

An potentially unbounded o*
bank of memory cells, 2 H

each of whichcan holdan O ﬂ

arbitrary number or
character -

#® Memory cells are numbered and accessing
any cell in memory takes unit time.

© 2004 Goodrich, Tamassia Analysis of Algorithms 8

N

Basic computations
performed by an algorithm

Identifiable in pseudocode

Largely independent from the
programming language

Exact definition not important
(we will see why later)

Assumed to take a constant
amount of time in the RAM
model

© 2004 Goodrich, Tamassia Analysis of Algorithms

Primitive Operations

—
——— e

—

#® Examples:
= Evaluating an
expression

= Assigning a value
to a variable

= Indexing into an
array

= Calling a method

= Returning from a
method

Counting Primitive
'Operations (§3.4)

N

o

By inspecting the pseudocode, we can determine the
maximum number of primitive operations executed by
an algorithm, as a function of the input size

Algorithm arrayMax(A, I’l) # Operations
currentMax < A[0] 2
fori< lton—1do 2n

if A[7]| > currentMax then 2(n—1)
currentMax < A[i] 2(n—1)
{ iIncrement counter i } 2(n—1)
return currentMax 1
Total 8n -2

© 2004 Goodrich, Tamassia Analysis of Algorithms

—
—3

[]

Estimating Running Time

N

® Algorithm arrayMax executes 8n — 2 primitive
operations in the worst case. Define:
a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive operation

Let T(n) be worst-case time of arrayMax. Then
a(8n—-2)<T(n) <b(8n-2)
Hence, the running time T(n) is bounded by two
linear functions

© 2004 Goodrich, Tamassia Analysis of Algorithms 11

Growth Rate of Running Time

N

Changing the hardware/ software
environment

» Affects T(n) by a constant factor, but

= Does not alter the growth rate of 7(n)
The linear growth rate of the running

time T(n) is an intrinsic property of

algorithm arrayMax

')

© 2004 Goodrich, Tamassia Analysis of Algorithms 12

Seven Important Functions (§3.3)

)
4 Seven functions that
often appear in LE+30
algorithm analysis: |78 T —Cubic 7
s Constant ~ 1 1E+24 — Quadratic //
= Logarithmic ~ log n IE¥22 7 _ | inear 7
= Linear ~ n }Eﬁg 7
= N-Log-N~nlogn = g // //
= Quadratic ~ n? = 1E+14 —
« Cubic » n’? igﬂg 7
= Exponential ~ 2 {Eig /
1E+6 // /
In a log-log chart, the 1E4 —~
I 1E+2
slope of the line i Z= | |

corresponds to the
rowth rate of the
unction

1E+0 1E+2 1E+4 1E+6 1E+H8 i 1E#10
n

N

Examples

m 1021+ 10° is a linear

function

m 10°n2+10%nis a
quadratic function

© 2004 Goodrich, Tamassia

#® The growth rate is
not affected by
= constant factors or
= |lower-order terms

Constant Factors

1E+26
1E+24
1E+22 —
1E+20 —
IE+18

- - -Quadratic
— Quadratic
- - -Linear
— Linear

1E+16

s 1E+14

~ 1E+12

1E+10

1E+8

1E+6

1E+4

1E+2

1E+0

1E+0

1E+2

Analysis of Algorithms

1E+4

1E+6

1E+8

1E+10

14

Blg -Oh Notation (§3.4)

10,000
Given functions f(n) and --3n

g(n), we say that f(n) is ot
O(g(n)) if there are ’
positive constants

¢ and n, such that 100

f(n) < cg(n) for n>n,
#® Example: 2n + 10 is O(n)]
m 2n+10<cn
s (c-2)n>10
s n>10/(c-2)
s Pick ¢c=3and n,=10

/\

1 10 100 1,000

Big-Oh Example

N

1,000,000

. . —nN2
#® Example: the function - 1oon
- 100,000 +— -
n2 IS nOt O(n) ---10n /,-"
m n2<cn 10,000 — — N =
m n<c¢ /
= The above inequality 1,000
cannot be satisfied
since ¢ must be a 100
constant
10
1 ‘
1 10 100 1,000
n
Analysis of Algorithms 16

© 2004 Goodrich, Tamassia

More Big-Oh Examples Q’(

N\

» /N-2

7/n-2 is O(n)

need c > 0 and n, > 1 such that 7n-2 < cen for n > n,
thisis true forc =7and n, = 1

m3n3+ 20n2 + 5
3n3 + 20n? + 5is O(n3)
need c > 0 and ny > 1 such that 3n3 + 20n2 + 5 < cen3 for n > n,
this is true for c = 4 and n, = 21

m3logn+5

3-log-n +-5-is-O(log-n)
need c > 0 and ny, > 1 such that 3 log n + 5 < celog n for n > n,
this is true forc = 8 and n, = 2

© 2004 Goodrich, Tamassia Analysis of Algorithms 17

{z

N

according to their growth rate

Big-Oh and Growth Rate

The big-Oh notation gives an upper bound on the
growth rate of a function

The statement “f(n) is O(g(n))” means that the growth
rate of f(n) is no more than the growth rate of g(n)

® We can use the big-Oh notation to rank functions

fin) 1s O(g(n))

g(n) is O(f(n))

g(n) grows more Yes No
f(n) grows more No Yes
Same growth Yes Yes

© 2004 Goodrich, Tamassia

Analysis of Algorithms

18

Big-Oh Rules

A
\

If is f(n) a polynomial of degree d, then f(n) is
o(n9), i.e.,
1. Drop lower-order terms
2. Drop constant factors

Use the smallest possible class of functions
= Say "2n is O(n)" instead of “2n is O(n?)"

#® Use the simplest expression of the class
s Say "3n + 5 is O(n)” instead of “3n + 5 is O(3n)”

© 2004 Goodrich, Tamassia Ana|ySiS of A|gOI‘Itth 19

Asymptotic Algorithm Analysis

N

@ The asymptotic analysis of an algorithm determines
the running time in big-Oh notation
To perform the asymptotic analysis
= We find the worst-case number of primitive operations
executed as a function of the input size
= We express this function with big-Oh notation

@ Example:
= We determine that algorithm arrayMax executes at most
8n — 2 primitive operations
= We say that algorithm arrayMax “runs in O(n) time”

Since constant factors and lower-order terms are
eventually dropped anyhow, we can disregard them

when counting primitive operations

Analysis of Algorithms

20

© 2004 Goodrich, Tamassia

Computing Prefix Averages

We further illustrate

N

35

asymptotic analysis with mX
two algorithms for prefix 30 1o 4 I
averages ”5
@ The i-th prefix average of -
an array X is average of the
first (i + 1) elements of X: 15 I
A[i] = (X[0] + XT1] + ... + X[iD/Gi+1) 10 -
#® Computing the array 4 of 5 I
prefix averages of another o L BT T LB AT
array X has applications to L 23 4 5 6 7

financial analysis

© 2004 Goodrich, Tamassia Analysis of Algorithms 21

Prefix Averages (Quadratic)

N

@ The following algorithm computes prefix averages in
quadratic time by applying the definition

Algorithm prefixAveragesI(X, n)

Input array X of n integers

Output array A of prefix averages of X #operations

A < new array of n integers n

fori<Oton—1do n
s < X[O] n
forj< 1 toido 1+2+..+(n—-1)

s < s+ X[j] l1+2+..+(n—-1)

Alil < s/(i+1)

return A 1

© 2004 Goodrich, Tamassia Analysis of Algorithms 22

Arithmetic Progression

N

The running time of

prefixAveragesl IS

O1+2+...+n)
@ The sum of the first n

integersis n(n+1)/2

= There is a simple visual

proof of this fact
® Thus, algorithm

S = NN W A U &

prefixAveragesl runs in
O(n?) time

© 2004 Goodrich, Tamassia Analysis of Algorithms

23

Prefix Averages (Linear)

N

® The following algorithm computes prefix averages in
linear time by keeping a running sum

Algorithm prefixAverages2(X, n)
Input array X of n integers
Output array 4 of prefix averages of X #operations
A < new array of n integers n
s < 0
fori<—Oton—1do

s < s+ X[i]
Alil] s/ (i+1)
return A

— S Q8 8 =

® Algorithm prefixAverages2 runs in O(n) time

© 2004 Goodrich, Tamassia Analysis of Algorithms 24

Math you need to Review

N

& W

B Summations

Proof techniques
@ Basic probability

© 2004 Goodrich, Tamassia

Logarithms and Exponents

® properties of logarithms:

log,(xy) = logyx + logpy
log,, (x/y) = log,x - log,y
log,xa = alog,x
log,a = log,a/log,b

#® properties of exponentials:
a(b+c) — aba C
abc o (ab)c
ab /ac - a(b-c)
b=a2a Iogab
bc = 3 c*Iogab

Analysis of Algorithms 25

Relatives of Big-Oh J

N

big-Omega
s f(n) is Q(g(n)) if there is a constant ¢ > 0
and an integer constant n, > 1 such that

f(n) > ceg(n) for n > n,

big-Theta

= f(n) is ®(g(n)) if there are constants c' > 0 and c”
> 0 and an integer constant n, > 1 such that
c'eg(n) < f(n) < c”eg(n) for n > n,

Intuition for Asymptotic
Notation

JA\

Big-Oh

= f(n) is O(g(n)) if f(n) is asymptotically
less than or equal to g(n)

big-Omega

= f(n) is Q(g(n)) if f(n) is asymptotically
greater than or equal to g(n)

big-Theta

= f(n) is ®(g(n)) if f(n) is asymptotically
equal to g(n)

© 2004 Goodrich, Tamassia Analysis of Algorithms 27

Example Uses of the

JReIatives of Big-Oh

m 5n?is Q(n?)
f(n) 1s Q(g(n)) 1f there 1s a constant ¢ > 0 and an integer constant n, > 1
such that f(n) = ceg(n) for n > n,
letc=5and n,=1
m Sn?is Q(n)
f(n) 1s Q(g(n)) if there is a constant ¢ > 0 and an integer constant n, > 1
such that f(n) > ceg(n) for n > n,
letc=1and n,=1

m 5n?is O(n?)

Ain) is O(g(n)) if it is Q(n?) and O(n?). We have already seen the former,
for the latter recall that f(n) 1s O(g(n)) if there is a constant ¢ > 0 and an
integer constant n, > 1 such that f(n) < ceg(n) for n > n,

Letc=5and n,=1

JA\

